Chemigation Updates 2008
Know how. Know **now**.

Chemigation Management
If no safety equipment is present, and the pumping plant shuts down but the injection pump continues to inject concentrated chemical into the pipeline where it then flows by gravity into the water source.
Routes of Entry

Orally through the mouth
Dermally through the skin
Inhalation by breathing into the lungs
Wind Drift Considerations

Research conducted near Concord, NE indicated that wind of 14 mph transported insecticide up to 265 feet downwind of the center pivot.
In Case of a Spill

**C**ontrol the leak by ceasing to chemigate and closing a valve or pinching off the hose.

**C**ontain the spill area by creating a dike around it or applying an absorbent.

**C**ontact your local NRD and the NDEQ immediately.

**C**lean up the spill as specified by the NDEQ.

*Chemigation Manual Page 28*
Personal Safety

Research at UNL shows that hands are the most likely route of entry for those involved in monitoring chemigation application of insecticides.
Know how. Know now.

Distance From Pivot Point

Peak Water Application Rate, in/hr

900 gpm

268 feet
536 feet
804 feet
1072 feet
1340 feet

Chemigation DVD and Manual Page 6
Soil Infiltration Rate

Potential Runoff, gpm

- Clay
- Silty clay
- Silt loam
- Sandy loam

Chemigation DVD and Manual Page 2-3
Irrigation management tools

Agricultural Water Management Demonstration Network
Our NRD partners as of 2007 and we invite others!
Watermark soil water sensors

Electrodes
Sensor collar
Stainless steel sleeve
Hand-held meter

Slide developed by Dr. Suat Irmak
Hansen AM400 Data Logger

http://www.mkhansen.com

Slide developed by Dr. Suat Irmak
How to use Watermark sensors?

Watermark Granular Matrix Sensor to Measure Soil Matric Potential for Irrigation Management

Suat Irmak, Irrigation and Water Resources Engineer; Jose O. Payero, Irrigation Engineer; Dean E. Eisenhauer, Hydrologic and Irrigation Engineering; William L. Kranz, Irrigation Specialist; Derrel L. Martin, Irrigation and Water Resources Engineer; Gary L. Zoubek, Extension Educator; Jennifer M. Rees, Extension Educator; Brandy VanDeWalle, Extension Educator; Andrew P. Christiansen, Extension Educator; Dan Leiningger, Water Conservationist, Upper Big Blue NRD

*Slide developed by Dr. Suat Irmak*
Irrigation trigger levels for different soil types

<table>
<thead>
<tr>
<th>Soil matric potential (kPa)</th>
<th>Silty clay loam topsoil, Silty clay subsoil (Sharpsburg)</th>
<th>Silt-loam topsoil, Clay loam subsoil (Keith)</th>
<th>Upland silt loam topsoil, Silty clay loam subsoil (Hastings, Crete, Holdrege)</th>
<th>Bottom land silt-loam (Wabash, Hall)</th>
<th>Fine sandy loam</th>
<th>Sandy loam</th>
<th>Loamy sand (O’Neill)</th>
<th>Fine sand (Valentine)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.20</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>20</td>
<td>0.20</td>
<td>0.14</td>
<td>0</td>
<td>0</td>
<td>0.55</td>
<td>0.50</td>
<td>0.45</td>
<td>0.55</td>
</tr>
<tr>
<td>33</td>
<td>0.45</td>
<td>0.36</td>
<td>0.32</td>
<td>0.30</td>
<td>0.80</td>
<td>0.70</td>
<td>0.60</td>
<td>0.70</td>
</tr>
<tr>
<td>50</td>
<td>0.50</td>
<td>0.40</td>
<td>0.47</td>
<td>0.44</td>
<td>1.0</td>
<td>0.80</td>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td>60</td>
<td>0.60</td>
<td>0.50</td>
<td>0.59</td>
<td>0.50</td>
<td>1.10</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>70</td>
<td>0.65</td>
<td>0.55</td>
<td>0.70</td>
<td>0.60</td>
<td>1.20</td>
<td>1.00</td>
<td>0.93</td>
<td>1.00</td>
</tr>
<tr>
<td>80</td>
<td>0.70</td>
<td>0.60</td>
<td>0.78</td>
<td>0.70</td>
<td>1.40</td>
<td>1.20</td>
<td>1.04</td>
<td>-</td>
</tr>
<tr>
<td>90</td>
<td>0.80</td>
<td>0.68</td>
<td>0.85</td>
<td>0.80</td>
<td>1.60</td>
<td>1.40</td>
<td>1.10</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td>0.90</td>
<td>0.86</td>
<td>1.08</td>
<td>1.20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>150</td>
<td>1.00</td>
<td>0.95</td>
<td>1.20</td>
<td>1.20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>200</td>
<td>1.8-2.0</td>
<td>1.8-2.0</td>
<td>2.2</td>
<td>2.0</td>
<td>1.8</td>
<td>1.4</td>
<td>1.1</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Available water capacity (in/ft) 1.8-2.0 1.8-2.0 2.2 2.0 1.8 1.4 1.1 1.0

*Slide developed by Dr. Suat Irmak*
Example: change in soil water status

Slide developed by Dr. Suat Irmak
ATMOMETER (ETgage)

Know how. Know now.

Slide developed by Dr. Suat Irmak
Using Modified Atmometers (ET\textsuperscript{gage}) for Irrigation Management

Suat Irmak, José O. Payero and Derrel L. Martin
Extension Water Resources /Irrigation Engineers

This NebGuide describes the atmometer (evapotranspiration gage) and explains how it can be used for irrigation scheduling. Examples are provided to show how information collected with an atmometer can be used to estimate crop water use for corn and soybean.

*Slide developed by Dr. Suat Irmak*
Table I. Alfalfa-based crop coefficients ($K_c$) at the beginning of each growth stage for corn, soybean, and wheat (High Plains Regional Climate Center, 2005).

<table>
<thead>
<tr>
<th>Corn</th>
<th>Soybean</th>
<th>Wheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth Stage</td>
<td>$K_c$</td>
<td>Growth Stage</td>
</tr>
<tr>
<td>2 leaves</td>
<td>0.10</td>
<td>Cotyledon</td>
</tr>
<tr>
<td>4 leaves</td>
<td>0.18</td>
<td>First Node</td>
</tr>
<tr>
<td>6 leaves</td>
<td>0.25</td>
<td>Second Node</td>
</tr>
<tr>
<td>8 leaves</td>
<td>0.51</td>
<td>Third Node</td>
</tr>
<tr>
<td>10 leaves</td>
<td>0.69</td>
<td>Beginning Bloom</td>
</tr>
<tr>
<td>12 leaves</td>
<td>0.88</td>
<td>Full Bloom</td>
</tr>
<tr>
<td>14 leaves</td>
<td>1.01</td>
<td>Beginning Pod</td>
</tr>
<tr>
<td>16 leaves</td>
<td>1.10</td>
<td>Full Pod</td>
</tr>
<tr>
<td>Silking</td>
<td>1.10</td>
<td>Beginning Seed</td>
</tr>
<tr>
<td>Bristle</td>
<td>1.10</td>
<td>Full Seed</td>
</tr>
<tr>
<td>Dough</td>
<td>1.10</td>
<td>Beginning Maturity</td>
</tr>
<tr>
<td>Beginning dent</td>
<td>1.10</td>
<td>Full Maturity</td>
</tr>
<tr>
<td>Full dent</td>
<td>0.98</td>
<td>Mature</td>
</tr>
<tr>
<td>Black layer</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>Full maturity</td>
<td>0.10</td>
<td></td>
</tr>
</tbody>
</table>

Emergence 0.10
Visible Crown 0.50
Leaf Elongation 0.90
Jointing 1.03
Boot 1.10
Heading 1.10
Flowering 1.10
Grain Fill 1.10
Stiff Dough 1.00
Ripening 0.50
Mature 0.10
Know how. Know now.

Example

Corn is at 12-leaf growth stage and the water level in the ETG (with a No. 54 canvas cover) sight tube decreased 1.30 inches during the 7-day period since the last irrigation. Determine the actual crop ET (ETc), net irrigation requirement (NIR), and the gross irrigation requirement (GIR) if irrigation is applied with a center pivot with an application efficiency of 85% (AE = 0.85). Rainfall = 0.

\[ \text{ETr} = 1.30 \text{ inches (reference ET from the ETG)} \]

\[ \text{Kc} = 0.88 \text{ (from table for 12-leaf stage)} \]

\[ \text{ETc} = \text{ETr} \times \text{Kc} = 1.30 \text{ inches} \times 0.88 = 1.1 \text{ inches} \]

\[ \text{NIR} = \text{ETc} - \text{Rainfall} = 1.1 \text{ inches} - 0 = 1.1 \text{ inches} \]

\[ \text{GIR} = \frac{\text{NIR}}{\text{IE}} = \frac{1.1 \text{ inches}}{0.85} = 1.3 \text{ inches} \]

*Slide developed by Dr. Suat Irmak*
Equipment Considerations

- Check sprinkler operation prior to the first chemigation event
  - look for pressure regulator leaks
  - look for sprinkler rotation and water distribution problems
  - replace sprinklers and regulators with ones appropriate for the location on the system

*Chemigation Manual Page 26*
In-Canopy Nozzle Packages

- Where water goes the chemical goes
  - Portion of the canopy may not be wet during an chemigation event
  - Water application rate increased due to reduced wetted diameter
  - Potential for runoff increases with a decrease in wetted diameter
  - To maintain uniformity, nozzle spacing must be 7.5 feet or less
Equipment Considerations

- Epoxy coated mainline check valves are rusting through and failing the no leakage test.
  - Consider galvanized valve models for future purchases

NRD Inspector reports
Rodents find their way in

Cover low pressure drain and vacuum relief valve outlets with screen or similar material
Each manufacturer of corner systems adjusts the operation of the main system differently as the corner arm engages.

**Example:** Slow down the main system to keep the acres irrigated per hour constant. Flow rate into the system increases.

Land under the main system and corner system gets same amount of chemical but area under the main system gets more water.
UNL Research has shown that injection rates are significantly affected by pressure in irrigation pipeline.

UNL Research has shown that injection rates vary significantly among injectors of the same manufacturer, and model number.

Must calibrate for each system!!
Equipment Considerations

- Bridge type low pressure drains require more than 25 psi to close. Thus, will not close with some low pressure systems.
  - Consider new plunger type valves for new purchases
  - Remember that plumbing may need to be adjusted for the new drains

As shown in the Chemigation DVD
Equipment Considerations

- In-line check valves may not pass inspection. Salt buildup on the valve seat is the main issue.
  - thoroughly flush the valve after each use
  - clean valve seat often and prior to winter storage
Equipment Considerations

- Polyethylene delivery hoses become degraded with time and will crack easily
  - replace all delivery hoses every year or two
  - purchase hoses that are less affected by sunlight

*Irrigator reports*
Equipment Considerations

- Read pesticide labels carefully!!
  - Normally closed solenoid valve required when injecting pesticides

Nebraska Chemigation Act specifies an alternative method of meeting the FIFRA requirement by requiring a check valve in the chemical injection line with a 10 psi cracking pressure.
Subsurface Drip Irrigation Systems

Title 195 -- Nebraska Chemigation Act DOES apply if chemicals are injected.

- Safety equipment required
- Chemigation Permit required
- Inspections required
- Operator must be certified
Subsurface Drip Irrigation Systems

Drip systems are treated like leach fields for residential septic treatment. Thus, an Underground Injection Control Permit must be approved before construction begins.

Rules are covered in Title 122

Contact your local NRD or NDEQ for Underground Injection Control Permit materials
Review of the Nebraska Chemigation Act
Definition of Chemical

- Chemical - is any fertilizer, fungicide, herbicide, or pesticide mixed with the water supply.

- The definition was incorrect in some versions of the summary of the law section.

*Chemigation DVD and Manual Page 41*
Rule Change

- Wording on sign for restricted use chemicals was changed to:

**KEEP OUT CHEMICAL APPLICATION THROUGH IRRIGATION SYSTEM**
Injection Location
Point at which the chemical is added to irrigation water

Chemigation Permit
Needed for every injection location except

No Permit for Open Discharge Systems

Chemigation DVD and Manual Page 41
Permit Holder

Owner or Operator of land who is legally responsible for the use of chemigation on the land

Applicator

Person actively engaged in the application of chemicals via chemigation

The permit holder and the applicator do not have to be the same person

Chemigation DVD and Manual Page 41
Permit

Permit expires on June 1 of the year following issuance

Emergency permit good for 45 days

Applicator Certification

Certification expires on January 1 4 years after being issued

Chemigation DVD and Manual Page 43 & 48
Permit Information Changes

Different certified applicator
Must notify the NRD within 10 days

Safety equipment was replaced
Must notify the NRD within 72 hours

Chemigation DVD and Manual Page 42 & 46
Safety Equipment Requirements

- Irrigation pipeline check valve
- Low pressure drain
- Vacuum relief valve
- Inspection port
- Chemical injection line check valve
- Simultaneous Interlock

Chemigation DVD and Manual Page 45-46
Rules and Regulations in Title 195

Report a actual or suspected spill within 24 hours to your local Natural Resources District and Nebraska Department of Environmental Quality.

Phone: (402) 471-2186

Chemigation DVD and Manual Page 49 & 28
Know how. Know now.

Chemigation Calibration
Example 1: A parcel of land is irrigated by a center-pivot with a length of 1,290 feet (pivot point to the last sprinkler). The water throw of the last sprinkler is an additional 25 feet beyond the end of the last sprinkler. There is no end gun. How many acres are irrigated if the center pivot makes a complete circle.

\[ WR = \text{length to last sprinkler} + \text{throw of last sprinkler} \]
\[ WR = 1290 \text{ ft} + 25 \text{ ft} \]
\[ WR = 1315 \text{ ft} \]

Area \[ \pi \times WR \times WR \]
\[ \frac{3.14 \times (1,315 \text{ ft})^2}{43,560 \text{ sq ft/acre}} \]
\[ = \frac{3.14 \times (1,315 \times 1,315)}{43,560} \]
\[ = 124.6 \text{ acres} \]

Calibration Workbook Page 11
**Example 1:** A parcel of land is irrigated by a center-pivot with the distance from the pivot point to the last wheel track of 1,265 feet. The speed of the pivot at the last wheel track is 9.0 feet per minute when the percentage timer is set at 100%. How long does it take the system to make one revolution when it is run at 100%.

\[
\text{Circumference} = 2 \times \pi \times r
\]
\[
= 2 \times 3.14 \times 1265 \text{ ft}
\]
\[
= 7944 \text{ ft/rev}
\]

\[
\text{Revolution time} = \frac{\text{circumference in feet}}{\text{travel speed in ft/min}}
\]
\[
\text{Revolution time} = \frac{7944 \text{ ft/rev}}{9.0 \text{ ft/min}}
\]
\[
= 883 \text{ min or 14.7 hrs}
\]
Example 2: A parcel of land is irrigated by a center-pivot that is 1,290 feet from the pivot point to the last tower. On the overhang of the system there is a sprinkler 20 foot beyond the last tower. The water throw of the last sprinkler is an additional 25 feet beyond the end of the last sprinkler. There is no end gun. If the application rate is 10 gallons per acre what is the injection rate when the system is run at 5 feet per minute.

Part 1:

\[
\begin{align*}
\text{Circumference} & = 2 \times \pi \times r \\
& = 2 \times 3.14 \times 1290 \text{ ft} \\
& = 8101 \text{ ft/rev}
\end{align*}
\]

\[
\begin{align*}
\text{Revolution time} & = \frac{\text{circumference in feet}}{\text{travel speed in ft/min}} \\
& = \frac{8101 \text{ ft/rev}}{5.0 \text{ ft/min}} \\
& = 1620 \text{ min or 27 hours}
\end{align*}
\]
Example 2: A parcel of land is irrigated by a center-pivot that is 1,290 feet from the pivot point to the last tower. On the overhang of the system there is a sprinkler 20 foot beyond the last tower. The water throw of the last sprinkler is an additional 25 feet beyond the end of the last sprinkler. There is no end gun. If the application rate is 10 gallons per acre what is the injection rate when the system is run at 5 feet per minute

Part 2:

\[ WR = \text{length to last tower} + \text{overhang} + \text{throw of last sprinkler} \]
\[ = 1290 \text{ ft} + 20 \text{ ft} + 25 \text{ ft} \]
\[ = 1335 \text{ ft} \]

\[ \text{Area} = \pi \times WR \times WR \]
\[ = \frac{3.14 \times (1,335 \text{ ft})^2}{43,560 \text{ sq ft/acre}} \]
\[ = \frac{3.14 \times (1,335 \times 1,335)}{43,560} \]
\[ = 128.4 \text{ acres} \]
Example 2: A parcel of land is irrigated by a center-pivot that is 1,290 feet from the pivot point to the last tower. On the overhang of the system there is a sprinkler 20 foot beyond the last tower. The water throw of the last sprinkler is an additional 25 feet beyond the end of the last sprinkler. There is no end gun. If the application rate is 10 gallons per acre what is the injection rate when the system is run at 5 feet per minute

Part 3:

\[
\text{Irrigation Rate} = \frac{\text{Area Irrigated}}{\text{Irrigation Time}}
\]

\[
= \frac{128.4 \text{ acres}}{27 \text{ hours}}
\]

\[
= 4.75 \text{ acres/hour}
\]

\[
\text{Injection Rate} = \text{Irrigation Rate} \times \text{Application Rate}
\]

\[
\text{Injection Rate} = 4.75 \text{ acres/hour} \times 10 \text{ gal/acre}
\]

\[
= 47.5 \text{ gal/hour or 101 oz/min}
\]
Know how. Know now.

Chemigation Information

*Internet*

- Department of Environmental Quality
  
  [http://www.deq.state.ne.us](http://www.deq.state.ne.us)

- University of Nebraska Extension
  
  [http://nerec.unl.edu/calendar.shtm](http://nerec.unl.edu/calendar.shtm)
  
  or

  [http://nerec.unl.edu/chemigation.shtml](http://nerec.unl.edu/chemigation.shtml)
Know how. Know now.

University of Nebraska–Lincoln Extension

Extension is a Division of the Institute of Agriculture and Natural Resources at the University of Nebraska–Lincoln cooperating with the Counties and the United States Department of Agriculture.

University of Nebraska–Lincoln Extension educational programs abide with the nondiscrimination policies of the University of Nebraska–Lincoln and the United States Department of Agriculture.