Using Precision Ag and New Technologies to Manage Crop, Irrigation and Livestock to Positively Impact Water Resources

Joe Luck, Daran Rudnick, Steve Melvin, Nathan Mueller, Laura Thompson

Precision Ag Technologies for Pest Management
Current Technology Description in the NRCS CSP Program

- Use of GPS is required to document application and site-specific compliance with all label requirements for controlling non-target application.
- Utilize one or more of the following techniques to reduce the total amount of chemical applied and reduce the potential for delivery of chemicals into water bodies:
 - Precision guidance system which reduces ground or aerial spray overlap to less than 12 inches
 - Variable rate technology (VRT) which allows rate of pesticide application to dynamically change for site specific applications
 - “Smart sprayer” technology which utilizes automatic sensors and computer controlled nozzles to turn individual nozzles on and off

- “GPS” refers to the U.S. satellite constellation
- Some antenna/receivers can accept signals from the GLONASS (Russian) constellation
- The antenna position is critical, it relates to where coverages will be recorded/compared
- GNSS accuracy can be improved through adoption of correction services

- For improved accuracy, two important concepts are related to:
 - Correction signal delivery method
 - Radio
 - Cellular
 - Satellite
 - Source or type of correction signal
 - WAAS
 - Additional frequency bands (L1/L2/L2C)
 - Real-time kinematic
 - Distance to the correction source will greatly affect accuracy

- The stationary nature of base stations (year to year) is one factor that helps deliver high accuracy GNSS
- We can improve both short-term accuracy (reported by industry) and long-term drift (not often reported)
- Every 6 miles from a base station can add nearly 1” to accuracy estimates
- The moral of the story is that most GNSS is fairly accurate for a single field operation...if we’re talking days to weeks to years...RTK may be necessary for repeatability
Automated Guidance Systems

• Automated guidance accuracy depends heavily on GNSS systems
• Even lower grade correction (WAAS) may provide very good pass-to-pass accuracy within a field for a short period of time...
• Over time, accuracy will degrade though and higher accuracy correction services may be required
• For example, controlled traffic essentially requires RTK level accuracy for year-to-year operations

Automated Guidance Systems

• Light bars, steering wheel assist and integrated hydraulic steering are three currently available options
• Control systems can offer a variety of field path tracking lines or curves...potentially very useful in terraces
• Reductions in pass-to-pass overlap and operator fatigue are two benefits of these systems
Automatic Boom Section (on/off) Control

- **Automatic Boom Section Control** combines GNSS data and GIS analysis in real-time.
- The location (GNSS), width, and status of each individual section are tracked as the sprayer traverses the field and stored as georeferenced polygons.
- Internal logic checks to see if that section is in an area that has been previously sprayed (or not).

- Control logic from the computer is used to automatically actuate boom manifold valves.
- These valves distribute flow to groups of nozzles (control sections).
- The five boom section valves (bottom right) were mapped to the five control sections shown above (actual coverage polygons in green).
Map-based functionality for Automatic Section Control

- Many operators do not utilize the full functionality of ASC systems
- **Map-based control** allows for identification of ‘no-spray’ zones within fields or at field boundaries
- Boom sections or nozzles will shut off automatically

Three methods can be used to identify no-spray zones

- No-spray zones and boundaries can be created in a GIS or FMIS program and uploaded to the monitor
- The operator can create these on-the-go during field applications by identifying which end of the boom they will track around zones
- Boundaries could be mapped using external GNSS (maybe with ATV) and imported into software
Map-based functionality for Automatic Section Control

- In this actual example, the left bank(s) of nozzles have shut off as the sprayer crosses into a grassed waterway

Map-based functionality for Automatic Section Control

- As-applied data can verify where sprayer coverage occurred (and rates)
- Not several locations below where the sprayer traversed no-spray zones (grassed waterways)
Automatic Nozzle (on/off) Control

- **Automatic Nozzle (on/off) Control** operates in the same basic way as ASC
- Individual nozzle solenoid valves are placed on each nozzle body (in place of check valves)

Payback for Automatic Boom or Nozzle (on/off) Control

- Payback on sprayers (and other implements) can depend on the number of control sections
- Field shapes and sizes on the farm also can greatly affect the reduction in overlap
- Once we hit individual nozzle control, errors will be 1% to 2% of field area
Payback for Automatic Boom or Nozzle (on/off) Control

- The table below shows actual over-application documented from four sprayers in the Kentucky case study.
- The manual vs. 7 ASC system was essentially before and after adoption of ASC.

<table>
<thead>
<tr>
<th>Sprayer control system</th>
<th>Boom width (ft)</th>
<th>Over-application (% of field area)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual-5 section</td>
<td>80</td>
<td>14.5</td>
</tr>
<tr>
<td>ASC-7 section</td>
<td>80</td>
<td>5.7</td>
</tr>
<tr>
<td>ASC-9 section</td>
<td>80</td>
<td>4.7</td>
</tr>
<tr>
<td>ASC-30 section</td>
<td>100</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Applications Beyond Spraying Systems

- Applications of map-based section/nozzle control extend well beyond spraying.
- Liquid nitrogen applicators can utilize essentially the same technologies.
- Aerial applicators can input field boundaries for shutting off boom outside of target fields.
- Dry spreaders can use map-based functions to reduce overlap at field ends.
- Planters utilize row clutch control to eliminate overlap.
Advanced Technologies for Spray Application Control

- **Automatic boom height control** is helpful for reducing potential spray drift during field applications.
- Pattern uniformity is also improved.
- Sensors along the boom adjust boom height to achieve a desired set point (typically 20” or 30”)

![Image: Teejet](image)

Advanced Technologies for Spray Application Control

- **Pulse Width Modulation** nozzle control valves for turn compensation systems are commercially available for minimizing off-rate spraying.
- Individual nozzle solenoid valves are ‘pulsed’ (i.e. pulse width modulation) at high frequencies to vary flow rates across the boom.
- The on/off pulsing is quantified as the ‘duty cycle’ which has a linear, directly proportional relationship to flow.

![Image](image)
Advanced Technologies for Spray Application Control

- John Deere, Raven Industries, and Capstan Ag Systems all have PWM turn compensation solutions
- These can help mitigate off-rate errors when turning is necessary during field applications
- Most self-propelled sprayers have turning radii less than half the boom width!

Rate control can be improved with these advanced spray application systems using PWM nozzle valves

An example from liquid N application shows significant improvements in rate control

16.5% of as-applied values are within +/-10% of the target rate
75.5% of as-applied values are within +/-10% of the target rate
Advanced Technologies for Spray Application Control

- **Direct injection systems** keep the chemical and carrier (water) separate on the sprayer
- Mixing and lag times are still a challenge, but reduced risk of improper batching of chemicals is a huge benefit

Advanced Technologies for Spray Application Control

- **See and spray technologies** are on the market
- Weedseeker essentially utilizes a **vegetation index** (NDVI) to open an integrated nozzle valve and spray weeds (green)
- Compared to blanket applications, potential is high for reductions in chemicals if weed pressure varies across a field
- Requires a sensor every 20” across boom...very expensive
Advanced Technologies for Spray Application Control

- See and spray technologies are on the market
- Blue River Technologies (recently purchased by Deere) uses machine vision to identify weeds
- Herbicides are only applied in short bursts to target weeds and not crops
- Currently viable in specialty crops...Deere will likely work to expand into row crops

How to Plan and Certify Variable Rate Nutrient Management

Questions?

Joe D. Luck, Ph.D., P.E.
Department of Biological Systems Engineering
204 L.W. Chase Hall
Lincoln, NE 68583
Phone: 402-472-1488
Email: jluck2@unl.edu
Twitter: @joeluck_unl