Effect of Rotation and Nitrogen application on Corn and Soybean Yields and Determining the Soybean Nitrogen Equivalent Contribution on Sandy Soils in Holt County

Final Report (2004-2009)

Investigators:	C. A. Shapiro, W. L. Kranz, and M. Pavlik
Technical assistance:	M. Mamo, M. Mainz, J. Scott, UENRD Staff
Cooperator:	Eugene Zuhlke

Location: SW ¼ Section 33 T28N R6W Antelope County (Sheet 10, Antelope County Soil Survey)

EXECUTIVE SUMMARY

This report summarizes a five year study designed to determine the rotation effect of soybean on corn and the value of both a corn/soybean and corn/corn/soybean rotation on sandy loams soils. The specific objectives and what we found are listed below:

1. Estimate the 'N credit' of soybean for the following corn crop. How this is determined depends on several factors, but the economic optimum N rate might be different by about 10 lbs of N per acre when the N rate is determined by the UNL procedures and when a corn/nitrogen price ratio is similar to the long term value of 8 (\$3.20/bu corn, \$0.40/lb N).

2. Determine if there is a difference in potential yield due to soybean in a corn/soybean and corn/corn/soybean sequence compared to corn/corn. The 3 year rotation has very little agronomic effect on the second year of corn, except that there was about 4 bu/ac more yield than in continuous corn.

3. Determine the effect of continuous soybean on soybean yields. Continuous soybean (60.9 bu/ac) yielded the same statistically but less than soybean in the corn/soybean rotation which averaged 63.4 bu/ac over the length of the experiment. Soybean every third year averaged 61.9 bu/ac. Since continuous corn is unlikely, the difference between soybeans every other year and every third year is minimal, and beyond the precision of this experiment to differentiate. However, we only measured the second cycle of the rotation. A longer experiment might find more differences.

4. Determine the effect of nitrogen application during early reproductive stage to soybean. There has been no yield response to nitrogen in any of the five years. Average yields were 64 bu/ac where only the nitrogen contained in irrigation water was applied, which was the highest yielding treatment compared to the average of the other nitrogen applications.

INTRODUCTION

When producers plant corn in a corn-soybean rotation system, the University of Nebraska nitrogen calculator currently gives a 45 lb N credit for a 'good' soybean crop, defined as over 25 bu/ac. When soybean yields are less than 25 bu/ac, the credit is 1 lb N per bushel of soybean yield. These credits are relatively low when compared to the calculated rates from research results. However, most of the rotation research has been conducted on silt loam and silty clay loam soils in rainfed areas of eastern Nebraska. Some irrigated rotation studies in the central part of the state have shown similar or higher credits, but none in the irrigated sands of the UENRD.

Soybean yields, while greater than in other parts of the state, may be difficult to sustain on the low

organic matter, coarse texture soils in parts of the UENRD. Producers are asking whether two years of corn and one year of soybean is a more economical and sustainable rotation than a corn/soybean rotation. There has been no documentation of the yield effects or soil quality effects of either rotation on sandy soils.

Nitrogen application to soybean during the growing season has been shown to increase yields in Kansas; research results in Nebraska have been variable and unpredictable. Replicated research that documents the impact of adding nitrogen in years with soybean has not been conducted on sandy soils.

There may be significant nitrogen leaching implications to all these practices.

Figure 1. Aerial photo of the demonstration site prior to initiating the project.

OBJECTIVES

Determine the rotation effect of soybean on corn and the value of both a corn/soybean and corn/corn/soybean rotations on sandy loam soils.

Sub-objectives:

- 1. Estimate the 'N credit' of soybean for the following corn crop.
- 2. Determine if there is a difference in potential yield due to soybean in a corn/soybean and corn/corn/soybean ratation compared to corn/corn.
- 3. Determine the effect of continuous soybean on soybean yields.
- 4. Determine the effect of nitrogen application during early reproductive stage to soybean.

PROCEDURES

Conducting a rotation experiment is complicated by the need to have every year of the rotation in each cropping year. In a soybean/corn evaluation, there needed to be both corn and soybean every year so that there was always a treatment with corn following soybean. With the proposed study, the corn-corn-soybean (C/C/SB) rotation means that there will be three experimental units in each replication each year so that there will always be all three phases of the rotation to compare.

The rotations used in this study are presented in Table 1 below. In experimental design jargon, the crop rotations are main plots (strips in Figure 2) and the nitrogen rates within the rotations are split plots. Each rotation treatment was split with six N rates (Figure 2). The N treatments applied to the corn part of the study were 0, 50, 100, 150, 200, and 250 lbs N/ac. Soybean received 0, 20, 40, 60, 80, and 100 lbs N/ac. Each year one set of plots were treated as bulk corn plots for the subsequent year as depicted in Figure 2. Nitrogen was applied both by hand and with fertilizer spreaders. Yields and data were collected from the inner two rows. Subplot length is 30 ft. Due to the need to avoid continuous treatments with lower N rates than optimum, creating a permanent deficit plot, the rotation blocks were split into two 6-row subplots. One side received a constant, optimum N rate plots would be on ground that was treated uniformly the previous year. The uniform rate applied was slightly below the UNL recommendation so excess nitrogen did not carry over to the future year.

Figure 2. Schematic drawing of the test plot layout for one partial replication (Strip 1 and 7, Table 1) over a 2-year period. Note that the location of the N application rates is rerandomized and that the bulk N plots were relocated each year. The first set of two strips would be for Year 1 of the study and the second two strips would be for Year 2. Soil samples were collected from the field area prior to the initial year of research. Table 2 presents the results of the laboratory analysis of those samples. Based on the soil sample results, 1200 lbs/ac of pelleted lime was broadcast applied over the plot area on April 15, 2005 to help increase the soil pH. Soil samples were collected each year of the project and analyzed for nitrate content, pH, organic matter, Bray P1, and Potassium. Results of the sample analysis are presented in Appendix I of this report.

<u>Strip¹</u>	Treatment	2003	2004	2005	2006	2007	2008
1	C/C/C	Soybean	Corn	Corn	Corn	Corn	Corn
2	C/SB	Soybean	Corn	Soybean	Corn	Soybean	Corn
3	SB/C	Soybean	Soybean	Corn	Soybean	Corn	Soybean
4	$SB/SB/SB^2$	Soybean	Soybean	Soybean	Soybean	Soybean	Soybean
5	SB/C/C	Soybean	Soybean	Corn	Corn	Soybean	Corn
6	C/SB/C	Soybean	Corn	Soybean	Corn	$Corn(2^{nd})$	Soybean
7	C/C/SB	Soybean	Corn	Corn	Soybean	$\operatorname{Corn}(1^{\operatorname{st}})$	Corn

Table 1.	Crop	rotation	treatment	set for	each	year	of a	6-1	year	stud	y
----------	------	----------	-----------	---------	------	------	------	-----	------	------	---

Notes:

¹Crop strips were 12 30-inch rows wide. Wide enough to avoid the border effect between corn and soybean strips.

² Continuous soybean is not a practical treatment, but was needed for statistical design and long-term information.

The University of Nebraska corn calculator was used each year to calculate the 'bulk' N rate in the 6 rows not in the study that year. The UNL recommended N rate was determined using an irrigation water nitrate concentration of 19.4 ppm, average nitrogen in the soil of less than 30 lbs N/ac, 1% organic matter and a 220 bu/ac yield goal. The resulting nitrogen recommendations for continuous corn were 215 lbs N/ac and 170 lbs N/ac for corn following soybean. The applied N to the bulk plots differed from year to year, but ranged from 150 to 180 lbs N/ac. The intent was to grow a decent crop, but not over apply and leave a large residual N amount.

Nitrogen rates were applied to soybean as a surface broadcast treatment of 34-0-0 at the R1 stage in all years. Nitrogen was applied to corn in the treatment areas three times during the season. Each nitrogen rate was split with 40% spread pre-emergence (Early May), 30% spread at V6 (Mid-June), and the remaining 30% spread at V11 (Early July). The N form used was ammonium nitrate to avoid potential volatilization problems. The nitrogen was not incorporated by tillage after application.

On the bulk strips, nitrogen was usually applied twice; at the same time as a pre-emergent N application and at one time between V6 and V11. Usually the bulk application was UAN 32-0-0, applied with a knife applicator. Nitrogen in the irrigation water and nitrogen applied as an adjuvant with the herbicide added about 50 lbs N/ac to each treatment. All corn in the bulk strips received the same nitrogen rate, regardless of whether it was following soybean or not.

	Sample		Buffered	Ag Lime	-				
Rep	Depth	pН	pН	required	K	Bray P1	OM	Nitrate	Texture
				lbs/ac	ppm	ppm	%	ppm	
1(NW)	0-8"	5.8	6.8	2000	207	40	0.8	2.8	SL
	8-24"	5.0	6.7	3000	147	31	0.8	3.8	SL
	24-48"	5.9	6.9	1000	160	4.5	0.6	4.2	L
2(SW)	0-8"	5.3	6.8	2000	235	42	1.2	3.8	L
· · /	8-24"	5.0	6.6	4000	131	15	0.9	5.2	L
	24-48"	5.9	6.8	2000	144	6.8	0.6	3.6	SL
3(NE)	0-8"	5.1	6.6	4000	148	67	0.8	1.9	L
	8-24"	4.9	6.6	4000	94	18	0.7	1.7	SL
	24-48"	5.9	6.9	1000	87	5.9	0.3	2.7	SL
4(NW)	0-8"	6.1	6.6	4000	132	34	0.9	3.3	SL
. ,	8-24"	5.4	6.7	3000	75	13	0.7	2.3	SL
	24-48"	5.2	6.9	1000	75	5.4	0.4	3.8	SL
	Ov	verall Sar	nple Average	es					
	0-8"	5.58	6.7	3000	181	45.8	0.93	3.0	L, SL
	8-24"	5.08	6.7	3500	112	19.3	0.78	3.3	SL
	24-48"	5.73	6.9	1250	117	5.7	0.48	3.6	L, SL

Table 2. Summary of soil sample analyses for soils collected prior to initiation of the field study near Brunswick, NE in 2004. (cores per sample, by replicate)

Note: Each sample is based on 4 cores. SL = sandy loam; L= loam;

Table 3.	2004 Irrigation	water analy	ysis results.
----------	-----------------	-------------	---------------

Water Analysis									
	ppm	lbs/ac ft							
NO ₃ -N	19.4	52.8							
Phosphate-P	0.18	0.5							
K	3	8.2							
Sulfate-S	2.06	5.6							
Ca	33	89.8							
Mg	6	16.3							
Na	3	8.2							
Cl	5	13.6							
HCO3	76								
EC (mmhos/cm)	0.26								
pH	7.52								
SAR	0.3								
SAR (adj)	0.4								
Hardness	62								
Lime		169							

Since one source of N to a growing crop is from the irrigation water, chemical analysis was performed to determine the amount of N supplied per inch of water applied. Results of the laboratory analyses are presented in Table 3 above. The nitrate-nitrogen concentration of 19.4 ppm would deliver 4.4 lbs N/ac-in of water applied. The water pH is slightly basic so it should help maintain the soil pH at a level near 7.

Cultural practices are not summarized here, however we used practices that were typical of the area. Adapted hybrids were used from various seed companies. Typical relative maturity and herbicide resistant varieties were chosen to fit the planting and harvesting schedule of the cooperating-producer. Either Roundup Ready[®] or Liberty Link[®] corn was used in alternative years to control volunteer corn and to allow the same chemical to be sprayed to both the soybean and corn without fear of drift problems.

Rain gauges were installed to record the water applied (precipitation + irrigation). Crop water use (ET) was estimated for each crop using weather data collected at the Brunswick location about 4 miles from the field site. Data were recorded by the High Plains Regional Climate Center and ET was calculated using the Modified Penman equation and crop-specific coefficients. Irrigation was scheduled based on the needs of the crop surrounding the experiment which rotated between corn and soybeans. A summary of water applied and ET is given in Appendix I-2.

Corn grain yields were recorded by machine harvesting 2-3 rows from each of the corn treatment plots and 1-2 rows from the soybean plots. Grain yields were converted to 15.5% moisture content for corn and 13% moisture for soybean. Regression equations were calculated from the average yields (2006-2008) from the N rate data for each regression using PROC REG in SAS.

Dry matter samples were collected shortly after physiological maturity from all the corn nitrogen treatments in 2007 and 2008 and selected N rates in 2006. To determine nitrogen in the stover, percent nitrogen was multiplied by the pounds of plant dry matter (non-grain) harvested at physiological maturity. Nitrogen uptake was calculated for the grain by dividing protein levels by 6.25 and multiplying by the pounds grain harvested and converted to 0% moisture. The stover and grain dry matter samples were combined for the total N uptake.

Stalk N samples were collected in 2007 and 2008 at approximately physiological mature to document the adequacy of the nitrogen application rates (Shapiro and DeLoughery, 2001). In addition chlorophyll meter readings were recorded 1-4 times per season to document the N status in the corn treatments (Shapiro et al., 2006).

RESULTS

Soil sampling throughout the project indicated that soil pH was low and the pelleted lime applications did not have a significant impact on soil pH levels at this site. The agricultural lime recommendation based on the April 21, 2007, analysis indicated a need for another 5000 lbs/ac. The last lime application was 500 lbs/ac pelleted lime applied into the standing crop June 19, 2006. Although the pH was low and called for additional applications, and most agronomists would recommend a pH of 6.5, the potential yield improvement may be low. The yields in the lime

studies that were conducted on the same quarter do not show much pH change or yield response to added lime (Tarkalson et al., 2010).

Soil potassium (K) and phosphorus (P) levels were consistently above the University of Nebraska critical levels of 125 and 15 ppm, respectively. In order to maintain a soil fertility balance, sulfur (S) was spread most years as $CaSO_4$ at a rate of about 20 lbs S/ac. However, sampling in the spring of 2009 after the experiment ended indicated that the final pH averaged 6.4, K was 138, Bray P was 16, and soil organic matter was 1.0 %. Most interesting are the soil organic numbers by rotation. There was no statistical difference but the trends indicate that the continuous soybeans had reduced organic matter compared to continuous corn, with the rotations in between (Table 4).

Rotation	pН	K	Р	OM	
		ppm		0⁄0	
Continuous corn	6.45	142	14.8	1.12	
Corn/corn/beans	6.32	140	15.4	1.04	
Corn/beans	6.47	131	16.0	1.08	
Continuous beans	6.65	140	19.4	0.99	
Prob >F	0.1896	0.8273	0.1085	0.7270	

Table 4. Effect of rotations on soil chemical measurements in top 6 in after two cycles. (2009).Brunswick, NE.

Corn

Rotation effects on grain yield

Statistical analysis over-years show that the last three years were consistent with relation to grain yield; the C/C/C treatment produced less grain yield than the C/SB rotation (Table 5). Average corn grain yield was between 14 and 32 bu/ac greater for rotations with soybean compared to continuous corn (Table 5, Column 7). Yields increased from continuous corn in the following order: C/C/C < SB/C/C < SB/C/C < SB/C.

Nitrogen effects

Nitrogen increased grain yields for all corn rotations, and there is evidence that the second year corn in the SB/C/ \underline{C} rotation requires the greatest N rate for maximum yields (Line 4,Table 6). Table 6 is based on the statistical regression of grain yield and N rate for each crop rotation. Column 5 of the table gives the N application rate that would be required to produce the maximum grain yield based on the best fit quadratic equations shown in Figure 3. For the SB/C/ \underline{C} rotation, 288 lbs N/ac were required to produce 216 bu/ac (Column 4). However, the other rotations with soybean required approximately 70 lbs N/ac less to reach the maximum yield which was similar to the C/C/C treatment. Although the recommended N rates for the C/C/C, SB/C, and SB/ \underline{C} /C rotations were similar (212, 214, and 208, respectively), the grain yield was greater for the rotations with soybean (191 vs 217 and 204 bu/ac, respectively).

<u>Strip</u>	Rotation	2004	2005	2006	2007	2008	Avg 06-08
				bu/ac ¹			
 (1) (2) (3) (5) 	Cont. Corn SB- <u>C</u> C-SB SB-C-C	186.6 199.4 ² ²	169.7 ² 179.1 177.7	168.7 200.6 2 193.1	162.7 186.6 2	145.2 185.3 2 180.7	158.8 190.8^{3} 183.8^{4}
(6) (7)	C-SB-C C-C-SB	185.6 184.6	156.0	186.9 ²	171.4 183.8	154.1	172.2 ⁵
Rotation Pr> LSI	n Mean F D (0.05)	189.9 0.1729 15.4	170.9 0.1278 21.5	193.5 0.0166 18.0	180.6 0.0417 17.5	173.3 0.0004 14.1	
Applied	N rate ⁶	2004	2005	2006	2007	2008	Avg 06-08
	0 lb/a 50 lb/a 100 lb/a 150 lb/a 200 lb/a 250 lb/a	143.5 170.3 192.8 207.9 212.8 206.9	120.2 152.8 173.5 187.5 197.5 192.3	130.1 167.3 194.0 207.4 209.3 215.8	125.0 162.3 182.4 192.3 195.7 199.0	89.9 136.3 167.4 190.6 203.8 209.7	115.0 155.3 181.3 196.8 202.9 208.2
N Rate Pr>F LSD	Mean 7 9 (0.05)	189.0 0.0001 14.7	170.6 0.0001 11.9	187.3 <.0001 10.3	176.1 <.0001 11.1	166.3 <.0001 13.8	

Table 5. Effect of rotation and N rate on corn grain yield in each strip. Brunswick, NE 2004-2008.

¹Grain yield in bu/ac at 15.5% moisture.

²Corn crop was not in the strip that year.

³Average of corn for the three years of corn following soybeans (strips 2 and 3).

⁴Average of corn for the three years of corn, first year after soybeans, but followed by corn.

⁵Average of corn for the three years of corn, second year after soybeans.

⁶Approximately 50 lbs N applied through pivot as nitrate in the groundwater in addition to what was applied as treatments.

Column 6 of Table 6 presents the N application rate that would be necessary to produce the maximum grain yield that was produced in the continuous corn rotation (191 bu/ac). For example, an application of 89 lbs N/ac in the SB/C treatment would produce approximately 191 bu/ac, the SB/<u>C</u> /C would require 113 lbs N/ac and the SB/C/<u>C</u> / would require only 148 lbs N/ac. Thus, the value of the SB/C rotation was equivalent to 123 lbs N/ac (C/C/C – SB/C) or (212 – 89 = 123 lbs N/ac) in reduced N required for maximum corn production.

Figure 3. Graph of best-fit quadratic equations for each of the 3-year rotations for the 2006-2008 growing seasons. Goodness-of-fit values for each rotation are presented in Table 6. (*Approximately 50 lbs N was applied through pivot as nitrate in the groundwater in addition to what was applied as treatments.*)

Other effects of nitrogen rate and rotation on corn

Appendix I-2.1 contains the 2006-2008 rotation by nitrogen rate means for grain yield, stover N, stover dry matter at physiological maturity, grain N and stalk nitrates at physiological maturity. For most of the variables the results are similar to the yield relationships. Continuous corn had the lowest values for most nitrogen rates, and the corn following soybeans had the highest values.

Stalk nitrate values ranged from the very low of 53 ppm where no fertilizer nitrogen was applied to 4252 ppm at 250 lbs N/ac. All rotations were below the adequate value of 700 when 100 lbs N/ac was applied. Only the corn following soybeans had a value over 2000 ppm at 150 lbs N/ac applied. All rotations had what would be categorized as excessive N at the 200 and 250 lbs N/ac rates. However, yields increased for some of these rotations even at the 250 lb application rate, so the 2000 ppm value does not indicate maximum yield. Only the continuous corn and the second year corn after soybeans had higher stalk nitrate values at 250 lbs N/ac than at 200 lbs N/ac. It is possible that more calibration work needs to be done for the stalk N test on sandy soils.

3-Year Crop Rotation ¹	Quadratic Equation ²	R-sq	Maximum Yield ³	Nitrogen Rate ⁴	N Required To Equal C/C/C ⁵	N savings when applied at C/C/C rate ⁶
	100 5		bu/ac	lb/ac	lb/ac	lb/ac
SB/ <u>C</u> /C	138.7 + 0.6306N - 0.0015N ²	0.99	204.5	208	113	99
C/C/C	91.50+ 0.9341N - 0.00216N ²	0.99	190.7	212	0	0
SB/C	139.50 + 0.7276N - 0.00173N ²	0.97	217.4	214	89	123
SB/C/ <u>C</u>	111.86 + 0.7264N - 0.00126N ²	0.99	216.0	288	148	64

 Table 6. Regression results for grain yield versus N application rate for the 2006-2008 growing seasons.

¹2 or 3-Year crop rotations for the 2006-2008 period. Example: SB/C/C = Soybean in 2006, Corn in 2007, and Corn in 2008. The bold underline \underline{C} indicates the phase of the rotation for the two corn years following soybeans. The two C/SB rotations are combined into the SB/C presented in Line 3 and the two SB/C/C rotations are included in Line 4.

² Coefficients for the statistical best-fit quadratic equation for corn grain yield versus N application rate as graphed in Figure 1. The best fit equation is of the form Yield = $aN^2 + bN + C$.

³ Predicted maximum grain yield using the best-fit quadratic equations in Column 2.

⁴ Predicted N rate needed to produce the maximum grain yield in Column 4 using the best-fit equations in Column 2.
 ⁵ Predicted N rate needed to produce the equivalent level of corn yield for the C/C/C rotation of 191 bu/ac using the

best-fit equations in Column 2.

⁶ Savings in \hat{N} to reach maximum C/C/C yields.

<u>Note:</u> Approximately 50 lbs N/ac was applied through pivot as nitrate in the groundwater in addition to what was applied as treatments. This was not accounted for in the regressions.

Soybean

Rotation effect on grain yield

Over the life of the project there were no significant yield differences among the three soybean rotations (Table 7). Over the last 3-years of the project, soybean yields were 63.5, 63.9, and 61.4 bu/ac the SB/SB/SB, SB/C, and SB/C/C rotations, respectively. Note that the soybean rotation with corn every other year produced the greatest soybean yield. This is the same rotation that produced the greatest corn yield discussed above. Thus, the positive effect of the C/SB/C rotation is exhibited in the yield for both corn and soybean planted the following year. These data provide clear evidence that the corn-soybean rotation would be the best management practice from an economic perspective. This assumes returns to corn and soybeans are generally similar.

There were no effects of nitrogen application rate on soybean yield except for 2007. Nitrogen did not increase yield, with the no nitrogen treatment having the second greatest average yield (64.1 bu/ac) except for the 100 lbs N/ac treatment yield (64.2 bu/ac) which was not an economic yield increase. In 2008, there was nearly an interaction between the rotations and the nitrogen rates (P>0.05). Based on 5 years of data for this sandy soil site, the addition of nitrogen as a dry broadcast treatment does not increase soybean yield at any level of N. However, approximately 53 lbs N/ac were applied in the irrigation water which may have masked the impact of adding dry fertilizer at the R1 stage.

	Yield	Yield	Yield	Yield	Yield	Mean
Treatments	2004	2005	2006	2007	2008	2006-2008
Rotation effects:			b	u/ac		
Continuous Soybean	63.9	63.8	66.1	63.6	60.9	63.5
Corn/Soybean		61.7	70.8	57.7	63.4	63.9
Corn/Corn/Soybean			68.0	60.8	61.9	61.4
$LSD_{0.05}$		7.6	2.2	5.5	6.1	
Prob,>F		0.6469	0.1109	0.0968	0.6517	
Nitrogen rates effects: ¹						
0	62.9	60.9	69.5	61.8	61.0	64.1
20	64.2	61.3	67.6	61.3	61.6	63.5
40	64.1	62.2	67.3	59.0	62.5	63.0
60	65.0	62.7	69.0	61.4	61.3	63.9
80	65.4	62.8	67.6	59.1	63.7	63.5
100	66.0	63.0	68.9	61.7	62.1	64.2
Mean	64.6	62.2	68.3	60.7	62.1	
LSD _{0.05}	3.1	2.0	3.06	3.3	2.2	
CV (%)	5.8	3.9	5.5	6.5	4.2	
Rotation (Prob.>F)		0.6469	0.1109	0.0968	0.6517	
N rate (Prob.>F)	0.4292	0.1881	0.5766	0.2902	0.1626	
N rate x Rotation (Prob.>F)		0.9397	0.2672	0.6211	0.0565	

Table 7. Effect of rotations and nitrogen on soybean yield. Brunswick, NE (2004-2008).

¹ Approximately 50 lbs N applied through pivot as nitrate in the groundwater in addition to what was applied as treatments.

Weather and Estimated Crop Water Use

Appendix I-2 contains average annual values for the main weather related variables used to estimate crop water use for corn and soybean. Average values across years show corn using about one more inch of water per year than soybean (23.9 vs. 23.1 inches). Average ET for corn and soybean was within the 22-24 inch range that is typical for the area. Another consideration is that with the emergence dates for the two crops being nearly the same for this project, it is expected that water usage would be similar. Thus, even though long term average ET levels would suggest about a 2-inch differential between the two crops, these data are more representative of the production practices currently in use by producers.

DISCUSSION

The data is clear that yields from the continuous corn are less than corn following soybean, and it takes more nitrogen to produce that yield. Table 6, Figure 3, and Appendix I-2 show the difficulty we have in calculating a soybean N credit since both the maximum yield and the N needed to grow that yield are different for corn following corn and for corn following soybeans. We can approach the 'N' credit three ways:

- 1. How much corn is grown with zero N applied as fertilizer. At the zero applied N the corn yields at zero applied N show that for the two corn following soybean rotations the yield is an average of 136 bu/ac. The lowest yield is for the continuous corn (92 bu/ac) which is 38 bu/ac less than following soybeans. For the second year corn after soybeans (110 bu/ac) the yield difference is only 26 bu/ac. Roughly the 'N credit' could be about 1 lb N/yield difference.
- 2. The second way to calculate the N credit is the nitrogen rates needed to produce maximum yield. As we pointed out in the results section, for three of the rotations there was little difference in N recommendations which ranged from 208 to 214 lbs N/ac. The second year corn after soybeans was much greater (288 lb N/ac) because the 250 lb N rate yields were greater than the 200 lb N rate, which made the regression maximum be outside the bounds of the data.
- 3. The third way to calculate the N credit is the one we did for the last column in Table 6 where the N needed to get to the maximum continuous corn yield. With this method there is a range of 'N' credits from 64 to 123 lbs N/ac.

The question is which one to use. There is no correct answer because one has to define the objectives. Most farmers recognize that maximum yield is not what they are aiming for, but the economic optimum. Therefore the answer is related to the price of corn and the price of nitrogen, and the 'credit' is not fixed. If we examine the continuous corn and the corn following soybean N response function and add economics to it we can construct Table 8. When nitrogen is inexpensive compared to corn (a high Corn:N ratio), in this example we used 12, the difference in N rate is 10 lbs more N in continuous corn compared to corn following soybeans. The yield difference is about 22 bushels, and return to N difference is \$85.75/ac when using a corn price of \$3.20/bu. Surprisingly the N needed to apply to corn following soybeans to make the return to fertilizer N the same with SB/C as continuous corn is 15 lbs N/ac. At the more normal ratio of 8, the N applied for maximum return to fertilizer is 10 lbs less for corn following soybeans, this produced 23 bu/ac bushels more and an increase in \$79/ac return to N fertilizer use. The N needed for equivalent return to fertilizer use is 55 lbs N/ac.

It would seem that under these conditions the difference in N fertilization for corn following soybeans would be 10 lbs N/ac less than corn following corn. However, returns to fertilizer dollars can still be greater within a corn/soybean rotation with a much larger decrease in N rates.

Rotation	N rate ¹	Yield ²	Return to Fertilizer N³	N for equivalent Cont. Corn profit		
	lbs N/ac	bu/ac	\$	lbs N/ac ⁴		
CN ⁵ ratio 4						
C/SB	140	208	552	15		
C/C	160	187	466			
CN ratio 8						
C/SB	175	214	614	55		
C/C	185	190	535			
CN ratio 12						
C/SB	185	215	638	67		
C/C	195	192	561			

Table 8. Effect of crop rotation on N rate, corn yield, and return to N application at three corn price to nitrogen price (C:N) ratios.

¹ N rate based on equations in Table 5 that produce maximum return to fertilizer N

² Yield at the N rate for maximum return to fertilizer

³ At the CN ratio the value of corn produced after fertilizer subtracted, for example at CN ratio of 4: Return= (208 x \$3.20) – (140 x \$0.80); note values in table may be rounded.

⁴ How much N is needed for the corn following soybeans return to fertilizer N to equal the continuous corn returns, for example it will take 15 lbs N on corn following soybeans to give a return of \$466, it is not in the table but the N rate would be 150 lbs N/ac.

⁵ Corn price to nitrogen price ratio, for example: \$3.20/bu corn and \$0.80 per lb N equals a CN ratio of 4; all returns in table based on a constant \$3.20/bu corn with the price of N varied.

Note: Approximately 50 lbs N applied through pivot as nitrate in the groundwater in addition to what was applied as treatments. This was not accounted for in the regression calculations.

REFERENCES

- Tarkalson, D., C. A. Shapiro, and J. Peterson. 2010. Use of fly ash as a liming material of corn and soybean production on an acidic sandy soil. Online. Crop Management. Doi:10.1094/CM-2010-0426-01-RS.
- Shapiro, Charles A., and Richard L. DeLoughery. 2001. The Corn Stalk Nitrate Test. University of Nebraska Extension NF01-491. Available at: <u>http://digitalcommons.unl.edu/extensionhist/1023/</u>
- Shapiro, Charles A., James S. Schepers, Dennis D. Francis, and John F. Shanahan. 2006. Using a chlorophyll meter to improve N management. University of Nebraska-Lincoln Extension G1632. Available at: http://www.ianrpubs.unl.edu/epublic/live/g1632/build/g1632.pdf

APPENDIX I-1 Soil Sample Analyses Results for 2005-2008

		Res	ults for 0-8	inch soil sa	mples		0-8"	0-8" 8-24" 24-48"			
Crop	Rep	Water	Buffered	Potassium	Bray P	%OM		NO ₃ -N-		Total N	
		pН	pН	PPI	M	LOI		PPM		lbs/ac	
Corn	1	5.5	6.6	227	27.0	0.94	1.30	0.91	2.90	28.37	
Soybean	1	5.4	6.5	264	44.4	2.33	3.60	0.84	2.38	29.81	
Corn	2	5.5	6.6	246	31.1	1.14	0.86	0.90	1.94	20.35	
Soybean	2	5.4	6.5	230	33.5	1.20	1.77	1.59	3.41	36.43	
Corn	3	5.1	6.5	146	35.4	0.74	0.90	0.57	0.84	10.94	
Soybean	3	5.7	6.5	162	33.2	0.88	1.58	1.50	0.83	16.97	
Corn	4	5.3	6.5	160	29.1	0.85	1.59	1.11	1.49	19.87	
Soybean	4	6.2	6.8	158	30.0	0.77	1.54	0.72	1.62	18.82	
					Overall A	Average	s				
Corn		5.4	6.5	194.8	30.6	0.9	1.2	0.9	1.8	19.9	
Soybean		5.7	6.6	203.5	35.3	1.3	2.1	1.2	2.1	25.5	

Table App. I-1.1Soil chemical properties averaged by crop sampled by replication in
the fall of 2005.

Note: In 2005 the rotations were not established and so there were just two crops following the 2004 crop (which was soybeans).

Rotation ¹	n^1 Results for 0-8 inch soil samples 0-8" 8-24" 24-48"										
Number	Rep	Water	Buffered	Potassiun	n Bray P	%OM		NO ₃ -N-		Total N	
	-	pН	pН]	PPM	LOI		PPM		lbs/ac	
2	1	5.43	6.51	292	32.3	1.60	4.12	4.29	4.44	62	
1	1	5.48	6.61	204	26.5	1.02	2.39	0.66	1.45	19	
4	1	5.46	6.52	182	36.0	0.79	2.38	2.15	2.78	36	
4	2	5.57	6.51	292	50.4	1.45	2.70	2.00	5.08	53	
2	2	5.32	6.51	298	54.5	1.44	2.78	1.63	3.83	42	
1	2	5.68	6.79	168	32.1	0.87	1.49	1.05	1.44	19	
2	3	5.21	6.59	165	25.4	0.90	2.18	1.04	0.77	16	
1	3	5.18	6.64	133	17.1	0.92	1.62	0.83	0.43	11	
4	3	5.39	6.70	151	37.8	0.76	2.21	1.49	2.86	33	
1	4	5.19	6.66	130	20.0	0.70	1.70	0.71	1.16	16	
4	4	5.71	6.80	146	10.8	0.69	2.12	1.20	2.51	29	
2	4	6.51	7.00	192	46.4	1.03	2.28	1.01	1.95	24	
					Overall R	otationa	al Avera	ge			
1		5.38	6.67	158.8	23.9	0.88	1.80	0.81	1.12	16	
2		5.62	6.65	236.8	39.7	1.24	2.84	1.99	2.75	36	
4		5.53	6.63	192.8	33.8	0.92	2.35	1.71	3.31	38	

 Table App. I-1.2
 Soil chemical properties averaged by crop sampled by replication in
 the fall of 2006.

¹Rotation 1 = continuous corn Rotation 2 = corn/soybean rotation Rotation 4 = continuous soybean rotation

Rotation ¹		Res	ults for 0-8	inch soil	samples		0-8"	8-24"	24-48"	0-48"
Number	Rep	Water	Buffered	Potassiu	um Bray P	%OM		NO ₃ -N		Total N
		pН	pН		-PPM	LOI		PPM		lbs/ac
3	1	5.39	6.49	333	29.5	1.05	13.67	4.86	2.84	77
5	1	5.49	6.60	330	65.88	1.66	2.83	1.00	1.07	19
2	1	5.09	6.40	176	22.8	1.39	1.60	1.79	2.04	27
6	1	4.85	5.44	177	34.3	1.04	1.84	1.38	1.78	24
1	1	4.96	5.10	155	29.8	0.85	2.33	1.29	2.03	26
4	1	5.54	6.67	203	42.8	0.80	2.39	1.24	2.65	31
7	1	5.06	6.29	255	70.2	1.59	3.22	2.41	3.44	44
4	2	5.20	6.41	322	42.4	1.68	11.06	5.02	2.97	72
2	2	5.09	6.33	228	79.0	1.19	1.43	1.12	0.96	16
1	2	5.56	6.66	120	17.4	0.76	1.91	1.26	1.96	25
6	2	6.34	7.00	123	12.6	0.75	1.51	1.02	2.08	24
5	2	5.89	6.71	117	70.4	0.74	1.74	1.20	1.66	22
7	2	6.36	7.00	195	20.1	0.81	4.20	1.36	3.09	39
3	2	6.40	7.00	134	27.2	0.80	2.90	1.05	1.71	24
5	3	5.22	6.47	100	12.7	0.92	1.58	0.77	1.02	15
6	3	5.28	6.53	120	35.9	0.90	1.66	0.91	1.42	19
3	3	5.60	6.57	151	21.8	0.99	2.94	1.07	1.80	25
2	3	5.43	6.52	150	31.1	1.05	1.81	1.15	1.06	18
1	3	5.37	6.51	160	22.9	0.78	1.25	0.71	1.09	14
4	3	5.85	6.74	141	37.8	0.82	2.38	1.03	1.70	23
7	3	5.37	6.50	131	13.3	0.95	2.25	1.02	1.81	23
6	4	5.01	6.53	124	14.2	0.84	2.01	1.10	1.12	18
1	4	4.97	6.25	119	27.4	0.76	1.62	0.58	1.14	15
5	4	5.23	6.49	130	30.3	0.97	2.06	1.03	1.40	20
7	4	5.77	6.68	156	9.6	0.88	3.21	1.22	2.77	34
3	4	6.64	7.00	191	21.4	0.82	2.29	1.13	1.79	24
4	4	5.92	6.62	137	39.1	0.71	1.22	0.97	2.18	23
2	4	5.39	6.51	161	24.9	0.80	1.76	1.07	1.19	18
				Overa	Ill Rotation	al Avera	ages			
1		5.21	6.13	138.5	24.4	0.79	1.78	0.96	1.56	20
2		5.25	6.44	178.8	39.4	1.11	1.65	1.28	1.31	20
3		6.01	6.76	202.3	25.0	0.91	5.45	2.03	2.03	37
4		5.63	6.61	200.8	40.5	1.00	4.26	2.06	2.38	37
5		5.46	6.57	169.3	44.8	1.07	2.05	1.00	1.29	19
6		5.37	6.38	136.0	24.2	0.88	1.75	1.10	1.60	21
7		4.51	5.29	147.4	22.6	0.85	2.58	1.20	2.22	28

Table App. I-1.3Soil chemical properties averaged by crop sampled by replication in
the fall of 2007.

¹ Rotation 1 = continuous corn; Rotation 2 = soybean/corn rotation; Rotation 3 = corn/soybean rotation; Rotation 4 = continuous soybean; Rotation 5 = soybean/corn/corn rotation; Rotation 6 = corn/soybean/corn rotation; Rotation 7 = corn/corn/soybean rotation

	_	0-8"	8-24"	24-48"	0-48"
Rotation	Rep		NO <u>3</u> -N		Total N
			PPM	·	lbs/ac
3	1	1.35	2.66	5.39	55
5	1	2.66	5.39	1.85	46
2	1	5.39	1.85	1.81	35
6	1	1.85	1.81	1.95	27
1	1	1.81	1.95	2.14	29
4	1	1.95	2.14	4.24	45
7	1	2.14	4.24	2.53	44
4	2	4.24	2.53	1.39	32
2	2	2.53	1.39	1.67	25
1	2	1.39	1.67	2.72	31
6	2	1.67	2.72	1.50	28
5	2	2.72	1.50	2.15	29
7	2	1.50	2.15	2.09	29
3	2	2.15	2.09	1.66	27
5	3	2.09	1.66	1.59	24
6	3	1.66	1.59	3.39	36
3	3	1.59	3.39	1.76	33
2	3	3.39	1.76	1.65	28
1	3	1.76	1.65	1.65	24
4	3	1.65	1.65	2.03	27
7	3	1.65	2.03	1.66	26
6	4	2.03	1.66	1.39	23
1	4	1.66	1.39	1.39	21
5	4	1.39	1.39	1.61	22
7	4	1.39	1.61	1.90	25
3	4	1.61	1.90	2.68	32
4	4	1.90	2.68	1.72	30
2	4	2.68	1.72	2.97	36
		Overall Ro	tational Average	es	
1		1.65	1.66	1.98	26
2		3.50	1.68	2.02	31
3		1.68	2.51	2.87	37
4		2.43	2.25	2.34	34
5		2.22	2.48	1.80	30
6		1.80	1.94	2.06	28
7		1 34	2 01	1 64	25

Table App. I-1.4Soil chemical properties averaged by crop sampled by replication in
the fall of 2008.

¹ Rotation 1 = continuous corn; Rotation 2 = soybean/corn rotation; Rotation 3 = corn/soybean rotation; Rotation 4 = continuous soybean; Rotation 5 = soybean/corn/corn rotation; Rotation 6 = corn/soybean/corn rotation; Rotation 7 = corn/corn/soybean rotation

Crop Rotation	Data	0-6" Sa	mple	
Continuous	Water pH		6.45	
Corn	Buffer pH			
	K (ppm)		1.42	
	P (ppm)		14.8	
	OM LOI (%)		1.10	
	Pounds N (48 in)		16	
		C/B	CC/B	
Corn/	Water pH	6.47	6.32	
Soybean or	Buffer pH			
Corn/Corn/	K (ppm)	131	140	
Soybean	P (ppm)	16.0	15.4	
•	OM LOI (%)	1.04	1.08	
	Pounds N (48 in)	19	22	
Continuous	Water pH		6.65	
Soybean	Buffer pH			
•	K (ppm)		140	
	P (ppm)		19.4	
	OM LOI (%)		0.99	
	Pounds N (48 in)		26	

Table App. I-1.5Soil chemical properties averaged by crop sampled by rotation. April,
2009. Brunswick, NE.

NOTE: Samples were taken in the 2008 'bulk' treatments in Spring 2009, 2 cores per sample, one sample per rotation/replication strip.

Appendix I-2 Corn crop yield components analysis results for 2006-2008

Table App. I-2.1 Effect of rotation and N rate on corn grain yield, stover N uptake,
stover DM, grain N uptake, and stalk nitrates. Brunswick, NE 2006-
2008.

		Ар	plied nitr	ogen (lbs N	/ac)		
	0	50	100	150	200	250	Rotation
Rotation			Grain Y	ield (bu/ac	2)		Mean
(1) Cont. Corn	92	130	167	184	188	192	159
(3) SB/Corn	135	179	197	204	214	216	191
(6) SB/Corn/Corn	110	146	171	194	201	216	163
(7) Corn/SB/Corn	137	169	188	197	203	203	185
Mean	119	156	181	195	202	207	
	~		100				
	<u>Stover</u>	<u>: N (lbs/a</u>	<u>c: 100 an</u>	<u>d 200 N rat</u>	es not san	npled in 2	<u>006)</u>
(1) Cont. Corn	28.2	37.4		51.8		63.2	47.5
(3) SB/Corn	34.8	47.9		57.5		74.0	54.2
(6) SB/Corn/Corn	34.4	40.0		55.8		67.4	49.4
(7) Corn/SB/Corn	43.8	46.7		59.2		70.1	58.0
Mean	35.3	43.0		56.1		68.1	
		Stove	r DM (Mg	g/ha: 2007-2	2008 only)		
(1) Cont. Corn	5.0	6.3	8.2	7.1	7.8	7.7	7.0
(3) SB/Corn	5.8	8.0	7.6	8.4	9.2	8.4	7.9
(6) SB/Corn/Corn	5.9	7.0	7.7	7.5	8.4	8.6	7.4
(7) Corn/SB/Corn	5.4	6.8	7.4	8.2	8.3	8.2	7.5
Mean	5.5	7.0	7.7	7.8	8.4	8.2	
			Grain	N Untake (lbs/ac)		
(1) Cont. Corn	55	78	<u>105</u>	118	123	129	102
(3) SB/Corn	80	109	103	133	142	144	102
(6) SB/Corn/Corn	66	90	108	126	133	147	97
(0) SD/Com/Com (7) Com/SB/Com	89	109	100	120	135	147 1/7	126
Mean	73	96.5	116	128	136	142	120
1vicun	10	2012	110	120	100	172	
		<u>Stalk</u>	nitrates (2	2007-2008 d	only: ppm)	
(1) Cont. Corn	55	51	484	1400	2731	4328	1508
(3) SB/Corn	33	181	660	2494	5358	5217	2324
(6) SB/Corn/Corn	51	82	457	1040	2930	4250	1509
(7) Corn/SB/Corn	26	84	432	1911	3918	3215	1468
Mean	41	100	508	1711	3734	4252	

Note: Approximately 50 lbs N/ac was applied through pivot as nitrate in the groundwater in addition to what was applied as treatments. Interpretation of stalk nitrate numbers is the following: 0-250 ppm, low; 250-700 marginal; 700-2000, optimal; >2000, Excess.

	Applied nitrogen (lbs N/ac)								
	0	50	100	150	200	250	Rotation		
Rotation			Chloro	phyll Mete	er		Mean		
			T 74.07						
			V 10/	(7/6)-					
(1) Cont. Corn	33.3	35.9	38.6	42.1	44.6	45.0	39.9		
(2) SB/Corn	32.6	35.5	39.2	41.9	44.0	45.2	39.7		
(5) SB/Corn/Corn	34.2	36.7	39.0	42.9	45.2	46.0	40.6		
(7) Corn/SB/Corn		No	ot available	e this year					
Mean	33.4	36.0	38.9	42.3	44.6	45.4	40.1		
ANOVA: Rotation, Pr	ob > F = 0	.66; Nrat	e, Prob>F	= <0.001;]	Rotation x	Nrate, Pro	b > F = 0.98;		
			W20	/ (8/3)					
(1) Cont. Corn	40.5	176	51.0	55 A	53.6	56.6	50.8		
(1) Colli. Colli (2) $SD/Comp$	40.3	47.0	52.0	55.4	56.0	57.0	50.8		
(2) SB/Corn	41.7	49.5	55.0	55.0	50.9	57.0	52.5		
(5) SB/Corn/Corn	41.3	49.6	53.0	55.6	56.9	57.0	51.7		
(7) Corn/SB/Corn		No	ot available	e this year					
Mean	41.2	48.8	52.3	55.5	55.8	56.9	51.6		
ANOVA: Rotation, Pr	ob > F = 0	.22; Nrat	e, Prob>F	= < 0.0001;	Rotation	x Nrate, Pi	rob>F = 0.03;		

Table App. I-2.2Effect of rotation and N rate on chlorophyll meter readings.
Brunswick, NE 2006.

¹Growth stage and date of sampling

Note: Approximately 50 lbs N/ac was applied through pivot as nitrate in the groundwater in addition to what was applied as treatments.

		A	pplied nitr	ogen (lbs N	l/ac)		
	0	50	100	150	200	250	Rotation
Rotation			Chloro	<u>phyll Mete</u>	r		Mean
			V15	/ (7/11) ¹			
(1) Cont. Corn	35.3	41.2	46.9	48.6	49.3	48.9	45.0
(3) SB/Corn	35.5	43.2	46.5	48.8	49.8	50.8	45.8
(6) SB/Corn/Corn	35.9	43.3	47.3	48.0	49.5	48.7	45.4
(7) Corn/SB/Corn	34.6	43.6	47.8	48.3	50.6	49.9	45.7
Mean	35.3	42.8	47.1	48.4	49.8	49.5	
ANOVA: Rotation, Pr	rob > F = 0	.043; Ni	rate, Prob.>	F = < 0.000	1; Rotatio	n x Nrate,	Prob>F=0.63;
			R1 (sil	king) / (7/2	(0)		
(1) Cont. Corn	37.7	47.1	53.1	51.2	57.5	56.8	50.6
(3) SB/Corn	38.5	50.0	55.4	57.5	58.5	58.9	53.1
(6) SB/Corn/Corn	37.4	48.8	54.6	56.3	58.4	57.2	52.1
(7) Corn/SB/Corn	41.9	49.0	54.0	57.1	59.1	59.2	53.4
Mean	38.8	48.7	54.3	55.5	58.4	58.0	
ANOVA: Rotation, Pr	rob > F = 0	.01; Nra	te, Prob>F	= <0.0001;	Rotation	x Nrate, Pr	rob>F =0.84;
			R3	/ (8/9)			
(1) Cont. Corn	40.1	49.0	563.8	59.6	60.8	61.3	54.6
(3) SB/Corn	40.6	52.6	56.2	59.9	61.4	61.5	55.3
(6) SB/Corn/Corn	40.3	51.2	57.8	58.5	61.0	61.3	55.0
(7) Corn/SB/Corn	40.0	52.0	57.6	59.5	60.6	62.2	55.3
Mean	40.2	51.2	57.1	59.4	60.9	61.6	
ANOVA: Rotation, Pr	rob > F = 0	.84; Nra	te, Prob>F	= <0.0001;	Rotation	x Nrate, Pr	rob>F = 0.94;
			R4 / (3	8\20)			
(1) Cont. Corn	39.2	47.0	53.1	56.0	58.0	57.8	51.8
(3) SB/Corn	40.2	51.5	54.2	57.1	57.5	58.2	53.1
(6) SB/Corn/Corn	40.9	48.0	53.4	56.0	56.3	57.7	52.0
(7) Corn/SB/Corn	39.5	50.0	53.7	56.5	56.9	58.6	52.5
Mean	39.9	49.1	53.6	56.4	57.2	58.0	
ANOVA: Rotation, Prol	b > F = 0.86	; Nrate, I	Prob>F = <0.	.0001; Rotat	ion x Nrate	, Prob>F =0).99;

Table App. I-2.3Effect of rotation and N rate on chlorophyll meter readings.
Brunswick, NE 2007.

¹Growth stage and date of sampling

Note: Approximately 50 lbs N/ac was applied through pivot as nitrate in the groundwater in addition to what was applied as treatments.

		Ар	plied nitr	ogen (lbs N	[/ac)		
	0	50	100	150	200	250	Rotation
Rotation			Chloro	phyll Mete	r		Mean
			V11 / (7/	9) ¹			
(1) Cont. Corn	37.0	44.5	47.4	49.2	51.0	51.2	46.7
(2) SB/Corn	41.0	48.6	50.2	52.3	51.0	51.0	49.0
(6) SB/ <u>Corn</u> /Corn	38.0	45.6	47.4	49.7	51.0	51.8	47.3
(5) SB/Corn/ <u>Corn</u>	39.9	48.8	50.2	51.2	50.6	53.2	49.0
Mean	39.0	46.9	48.8	50.6	50.9	51.8	
ANOVA: Rotation, Pre	ob > F = 0	0.003; Nra	ate, Prob>I	F = < 0.0001	; Rotation	x Nrate, I	Prob>F = 0.08;
			V17 /	(7/23)			
(1) Cont. Corn	31.9	42.2	48.4	50.1	50.3	51.4	45.7
(2) SB/Corn	35.7	45.5	51.8	51.1	53.6	52.9	48.4
(6) SB/ <u>Corn</u> /Corn	32.4	44.9	48.3	50.6	52.0	52.9	46.9
(5) SB/Corn/ <u>Corn</u>	32.4	46.3	51.2	53.0	53.1	55.1	48.5
Mean	33.1	44.7	49.9	51.2	52.2	53.1	
ANOVA: Rotation, Pre	ob > F = 0	0.03; Nrat	e, Prob>F	= <0.0001;	Rotation	x Nrate, P	rob>F = 0.80;
			R1-2/	' (8/12)			
(1) Cont. Corn	29.6	36.0	47.9	51.1	55.7	54.5	45.8
(2) SB/Corn	36.2	45.3	51.6	52.6	55.5	54.8	49.3
(6) SB/Corn/Corn	31.7	38.7	48.1	49.8	53.2	53.9	45.9
(5) SB/Corn/Corn	32.0	44.4	50.8	53.0	55.5	55.3	48.5
Mean	32.4	41.1	49.6	51.6	55.0	54.6	
ANOVA: Rotation, Pre	ob > F = 0	0.001; Nr	rate, Prob>	F = < 0.0001	; Rotation	x Nrate, 1	Prob>F = 0.02;
			R3-4 /	(8/25)			
(1) Cont. Corn	26.5	34.4	45.8	50.3	55.4	55.7	44.7
(2) SB/Corn	37.4	48.1	53.2	52.9	54.8	57.6	50.6
(6) SB/Corn/Corn	25.9	37.1	47.3	51.6	55.8	55.9	45.6
(5) SB/Corn/Corn	27.4	44.9	50.3	53.1	56.4	57.1	48.2
Mean	29.3	41.1	49.1	52.0	55.6	56.5	10.2
ANOVA: Rotation Pro	ob > F =	: Nrate I	Prob > F =	: Rotation	x Nrate P	rob > F = 0	16:
		, 1 (1ate, 1		, itotation	11 1 11 ate, 1	100/1 - 0	•••••

Table App. I-2.4Effect of rotation and N rate on chlorophyll meter readings.
Brunswick, NE 2008.

¹Growth stage and date of sampling

Note: Approximately 50 lbs N/ac was applied through pivot as nitrate in the groundwater in addition to what was applied as treatments.

Appendix I-3

								Month						
	Data	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Average
2004	Avg T _{max} (^o F)	28.8	34.3	53.7	64.8	72.1	77.6	83.0	81.4	78.9	62.4	46.3	40.4	60.3
	Avg T _{min} (^o F)	8.6	15.8	29.5	36.9	49.0	54.4	60.5	55.5	52.8	38.1	26.9	17.9	37.2
	Accumulated GDD's					204	688	1337	1904	2424	2501			2501
	Avg Soil temp (°F)	29.7	31.5	42.3	54.3	63.7	71.6	77.3	74.0	48.4	53.6	40.8	31.4	51.6
	Avg Wind Sp (mi hr ⁻¹)	9.9	11.6	11.9	10.6	12.5	8.6	7.5	8.2	11.4	9.6	9.2	11.0	10.2
	Avg Solar Rad (Langleys)	160	237	324	437	476	505	505	461	365	240	175	128	334
	Sum of Prec (inch)					4.1	2.9	3.9	1.5	6.5	0.3			19.2
	Sum of Corn ET (inch)					1.4	3.5	6.9	7.5	5.5	0.3			25.2
	Sum of Soybean ET (inch)						2.2	5.5	8.1	7.2	1.4			24.3
								Month						
	Data	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Average
2005	Avg T _{max} (°F)	38.7	46.4	56.0	61.7	75.3	86.1	88.0	83.7	72.2	62.9	42.8	35.5	62.4
	Avg T _{min} (^o F)	18.1	22.8	31.2	40.8	52.1	62.9	62.4	60.0	45.5	34.4	16.2	19.5	38.8
	Accumulated GDD's						585	1325	1980	2491				2491
	Avg Soil temp (°F)	30.4	35.9	44.7	55.1	65.6	79.8	80.5	75.8	47.3	50.6	36.6	33.2	53.0
	Avg Wind Sp (mi hr ⁻¹)	10.2	10.1	11.0	12.1	9.8	9.7	8.6	9.2	9.6	9.5	11.9	10.4	10.2
	Avg Solar Rad (Langleys)	167	276	336	418	504	614	539	464	354	273	162	152	355
	Sum of Prec (inch)						6.1	4.1	6.8	4.8	0.1			21.8
	Sum of Corn ET (inch)						3.7	8.8	6.8	4.2				23.5
	Sum of Soybean Et (inch)				-		3.8	8.8	6.8	3.8				23.2

Table App. I-3.1Summary of weather information for 2004-2008 (Brunswick, NE station).

								Month						
	Data	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Average
2006	Avg T _{max} (^o F)	38.3	45.2	62.6	69.5	85.0	88.4	88.0	71.4	62.0	53.9	38.7	35.1	61.5
	Avg T _{min} (^o F)	16.1	22.2	39.0	45.1	58.9	61.6	63.2	50.7	38.3	26.0	18.9	23.2	38.6
	Accumulated GDD's					200	806	1564	2227	2496				2496
	Avg Soil temp (°F)	33.3	37.5	50.7	60.0	73.2	80.0	79.9	66.1	41.5	41.5	32.0	31.9	52.3
	Avg Wind Sp (mi hr ⁻¹)	11.3	10.9	13.2	11.5	9.6	8.3	8.9	9.0	9.9	9.3	9.9	7.0	9.9
	Avg Solar Rad (Langleys)	243	338	400	503	554	614	507	339	266	205	141	78	349
	Sum of Prec (inch)					1.2	6.7	2.3	2.4	4.6	1.0			18.1
	Sum of Corn ET (inch)					1.4	5.7	10.2	6.7	1.7				25.6
	Sum of Soybean ET (inch)					1.4	5.7	10.2	6.7	1.2				25.2
							Mor	nth						
	Data	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Average
2007	Avg Tmax (oF)	29.2	27.1	53.9	58.4	73.7	81.6	88.2	83.9	76.4	65.1	49.2	29.2	59.7
	Avg Tmin (oF)	12.0	10.4	32.0	35.8	52.1	58.7	63.5	63.5	50.4	42.5	24.7	11.9	38.1
	Accumulated GDD's					79	677	1427	2134	2503				2503
	Avg Soil temp (oF)	29.8	28.5	41.8	48.7	64.0	68.8	80.2	76.7	48.5	54.3	41.3	31.9	51.2
	Avg Wind Sp (mi hr ⁻¹)	12	11	13	11.8	11.7	9.7	7.9	7.8	11.2	11.2	11.1	8.8	10.6
	Avg Solar Rad (Langleys)	189	244	326	421	467	551	607	412	370	260	209	142	350
	Sum of Prec (inch)					3.1	5.5	8.5	9.1	4.4	3.8			34.3
						0.8	/ 10	8 5/	55	2 55				22.2
	Sum of Corn ET (Inch)					0.0	4.13	0.04	0.0	2.00				

Table App. I-3.1 Summary of weather information for 2004-2008 (Brunswick, NE station). (continued)

			Month											
	Data	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Average
2008	Avg Tmax (°F)	29.0	32.0	44.7	56.2	67.2	79.8	85.7	83.6	75.0	60.4	42.7	28.1	57.0
	Avg Tmin(°F)	8.8	10.7	23.3	31.8	44.4	56.3	62.0	58.4	50.3	37.9	26.1	7.5	34.8
	Accumulated GDD's					93	634	1348	1988	2412	2482			2482
	Avg Soil temp (°F)	29.4	27.8	33.1	42.6	57.6	73.5	80.1	79.2	46.8	52.1	38.7	30.8	49.3
	Avg Wind Sp (mi hr ⁻¹)	11.0	11.1	11.0	13.5	10.9	8.3	7.8	7.7	9.3	9.7	11.6	12.7	10.4
	Avg Solar Rad (Langleys)	195	277	339	465	443	548	514	493	360	228	146	151	347
	Sum of Prec (inch)					6.5	4.8	9.5	6.5	2.0	2.0			31.4
	Sum of ETCORN (inch)					1.0	3.6	7.1	7.3	3.8	0.3			23.0
	Sum of ETBEANS (inch)					1.0	4.1	7.3	7.9	1.8				22.0
Note: Sum of Precip, where irrigation data is available, includes irrigation and rainfall amounts.														
ŀ	Accumulated GDD's are Growi	ng Degree	Days cal	culated fro	om corn er	nergence	until maturity	using the 86°	- 50° met	hod.				

Table App. I-3.1 Summary of weather information for 2004-2008 (Brunswick, NE station). (continued)

AVERAGE PROJECT WEATHER DATA 2004-2008

Data	2004	2005	2006	2007	2008	AVERAGE	10-YR AVG
Avg Ҭ _{max} (^o F)	60.3	61.0	62.0	59.7	57.0	60.0	60.7
Avg T _{min} (^o F)	37.2	38.5	38.5	38.1	34.8	37.4	38.1
Accumulated GDD's	2501	2491	2496	2503	2482	2495	2647
Avg Soil temp (F)	51.5	52.4	52.0	51.2	49.3	51.3	51.2
Avg Wind Sp (mi ħ¹i)	10.2	10.1	10.2	10.6	10.4	10.3	9.8
Avg Solar Rad (Langleys)	335	354	353	350	347	348	334
Sum of Prec (inch)	19.2	21.8	18.1	34.3	31.4	25.0	15.7
Sum of Corn ET (inch)	25.2	23.5	25.6	22.2	23.0	23.9	
Sum of Soybean ET (inch)	24.3	23.2	25.2	20.8	22.0	23.1	
Note: 10-year average values	represent th	ne entire w	eather data	a history for	r this location	on.	

APPENDIX II Aerial Photos

2004

2004 Veris Maps

Surface Veris

Deep Veris

2004 (7-11-2004)

2005, infrared; 8-29-05

2006 (07-30-2006)

2007 (07-07-2007)

2008 (07-27-2008)

2008 Field Day

